一、前言
數學離程式設計師有多近?
ifelse也好、for迴圈也罷,程式碼可以說就是對數學邏輯的具體實現。所以敲程式碼的程式設計師幾乎就離不開數學,難易不同而已。
那數學不好就寫不了程式碼嗎?不,一樣可以寫程式碼,可以寫出更多的CRUD出來。那你不要總覺得是產品需求簡單所以你的實現過程才變成了增刪改查,往往也是因為你還不具備可擴充套件、易維護、高效能的程式碼實現方案落地能力,才使得你小小年紀寫出了更多的CRUD!
與一錐子買賣的小作坊相比,大廠和超級大廠更會注重數學能力。
2004年,在矽谷的交通動脈 101 公路上突然出現一塊巨大的廣告牌,上面是一道數學題:{e 的連續數字中最先出現的 10 位質數}.com。
廣告:這裡的 e 是數學常數,自然對數的底數,無限不迴圈小數。這道題的意思就是,找出 e 中最先出現的 10 位質數,然後可以得出一個網址。進入這個網址會看到 Google 為你出的第二道數學題,成功解鎖這步 Google 會告訴你,我們或許是”志同道合“的人,你可以將簡歷發到這個郵箱,我們一起做點改變世界的事情。
計算 e 值可以透過泰勒公式推匯出來:e^x≈1 + x + x^2/2! + x^3/3! +……+ x^n/n! (1) 推導計算過程還包括埃拉托色尼篩選法(the Sieve of Eratosthenes)、線性篩選法的使用。感興趣的小夥伴可以用程式碼實現下。
二、把程式碼寫好的四步業務提需求、產品定方案、研發做實現。最終這個系統開發的怎麼樣是由三方共同決定的!
地基挖的不好,樓就蓋不高磚頭擺放不巧,樓就容易倒水電走線不妙,樓就危險了格局設計不行,樓就賣不掉這裡的地基、磚頭、水電、格局,對應的就是,資料結構、演算法邏輯、設計模式、系統架構。從下到上相互依賴、相互配合,只有這一層做好,下一層才好做!
資料結構:高矮胖瘦、長寬扁細,資料的存放方式,是一套程式開發的核心基礎。不合理的設計往往是從資料結構開始,哪怕你僅僅是使用資料庫存放業務資訊,也一樣會影響到將來各類資料的查詢、彙總等實現邏輯的難易。演算法邏輯:是對資料結構的使用,合適的資料結構會讓演算法實現過程降低時間複雜度。可能你現在的多層for迴圈在合適的演算法過程下,能被最佳化為更簡單的方式獲取資料。注意:演算法邏輯實現,並不一定就是排序、歸併,還有你實際業務的處理流程。設計模式:可以這麼說,不使用設計模式你一樣能寫程式碼。但你願意看到滿螢幕的ifelse判斷呼叫,還是喜歡像膏藥一樣的程式碼,貼上來複制去?那麼設計模式這套通用場景的解決方案,就是為你剔除掉程式碼實現過程中的噁心部分,讓整套程式更加易維護、易擴充套件。就是開發完一個月,你看它你還認識!系統架構:描述的是三層MVC,還是四層DDD。我對這個的理解就是家裡的三居還是四局格局,MVC是我們經常用的大家都熟悉,DDD無非就是家裡多了個書房,把各自屬於哪一個屋子的擺件規整到各自屋子裡。那麼亂放是什麼效果呢,就是自動洗屁屁馬桶給按到廚房了,再貴也格楞子! 好,那麼我們在延展下,如果你的衛生間沒有流出下水道咋辦?是不這個地方的資料結構就是設計缺失的,而到後面再想擴充套件就難了吧!所以,研發在承接業務需求、實現產品方案的時候。壓根就不只是在一個房子的三居或者四居格局裡,開始隨意碼磚。
沒有合理的資料結構、沒有最佳化的演算法邏輯、沒有運用的設計模式,最終都會影響到整個系統架構變得臃腫不堪,呼叫混亂。在以後附加、迭代、新增的需求下,會讓整個系統問題不斷的放大,當你想用重構時,就有著千絲萬縷般呼叫關係。 重構就不如重寫了!
三、for迴圈沒演算法快在《程式設計之美》一書中,有這樣一道題。求:1n中,1出現的次數。比如:110,1出現了兩次。
1. for 迴圈實現long startTime = System.currentTimeMillis();int count = 0;for (int i = 1; i <= 10000000; i++) { String str = String.valueOf(i); for (int j = 0; j < str.length(); j++) { if (str.charAt(j) == 49) { count++; } }}System.out.println("1的個數:" + count);System.out.println("計算耗時:" + (System.currentTimeMillis() - startTime) + "毫秒");
使用 for 迴圈的實現過程很好理解,就是往死了迴圈。之後把迴圈到的數字按照字串拆解,判斷每一位是不是數字,是就+1。這個過程很簡單,但是時間複雜很高。
2. 演算法邏輯實現如圖 20-3 所示,其實我們能發現這個1的個數在100、1000、10000中是有規則的迴圈出現的。11、12、13、14或者21、31、41、51,以及單個的1出現。最終可以得出通用公式:abcd...=(abc+1)*1+(ab+1)*10+(a+1)*100+(1)*1000...,abcd代表位數。另外在實現的過程還需要考慮比如不足100等情況,例如98、1232等。
實現過程
long startTime = System.currentTimeMillis();int num = 10000000, saveNum = 1, countNum = 0, lastNum = 0;int copyNum = num;while (num != 0) { lastNum = num % 10; num /= 10; if (lastNum == 0) { // 如果是0那麼正好是少了一次所以num不加1了 countNum += num * saveNum; } else if (lastNum == 1) { // 如果是1說明當前數內少了一次所以num不加1,而且當前1所在位置 // 有1的個數,就是去除當前1最高位,剩下位數,的個數。 countNum += num * saveNum + copyNum % saveNum + 1; } else { // 如果非1非0.直接用公式計算 // abcd...=(abc+1)*1+(ab+1)*10+(a+1)*100+(1)*1000... countNum += (num + 1) * saveNum; } saveNum *= 10;}System.out.println("1的個數:" + countNum);System.out.println("計算耗時:" + (System.currentTimeMillis() - startTime) + "毫秒");
在《程式設計之美》一書中還不只這一種演算法,感興趣的小夥伴可以查閱。但自己折騰實現後的興奮感更強哦!
3. 耗時曲線對比按照兩種不同方式的實現邏輯,我們來計算1000、10000、10000到一個億,求1出現的次數,看看兩種方式的耗時曲線。
for迴圈隨著數量的不斷增大後,已經趨近於無法使用了。演算法邏輯依靠的計算公式,所以無論增加多少基本都會在1~2毫秒內計算完成。那麼,你的程式碼中是否也有類似的地方。如果使用演算法邏輯配合適合的資料結構,是否可以替代一些for迴圈的計算方式,來使整個實現過程的時間複雜度降低。
四、Java中的演算法運用在 Java 的 JDK 實現中有很多數學知識的運用,包括陣列、連結串列、紅黑樹的資料結構以及相應的實現類ArrayList、Linkedlist、HashMap等。當你深入的瞭解這些類的實現後,會發現它們其實就是使用程式碼來實現數學邏輯而已。就像你使用數學公式來計算數學題一樣
接下來小傅哥就給你介紹幾個隱藏在我們程式碼中的數學知識。
1. HashMap的擾動函式未使用擾動函式
已使用擾動函式
擾動函式公式
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);}
描述:以上這段程式碼是HashMap中用於獲取hash值的擾動函式實現程式碼。HashMap透過雜湊值與桶定位座標 那麼直接獲取雜湊值就好了,這裡為什麼要做一次擾動呢?作用:為了證明擾動函式的作用,這裡選取了10萬單詞計算雜湊值分佈在128個格子裡。之後把這128個格子中的資料做圖表展示。從實現資料可以看到,在使用擾動函式後,曲線更加平穩了。那麼,也就是擾動後雜湊碰撞會更小。用途:當你有需要把資料雜湊分散到不同格子或者空間時,又不希望有太嚴重的碰撞,那麼使用擾動函式就非常有必要了。比如你做的一個數據庫路由,在分庫分表時也是儘可能的要做到雜湊的。2. 斐波那契(Fibonacci)雜湊法描述:在 ThreadLocal 類中的資料存放,使用的是斐波那契(Fibonacci)雜湊法 + 開放定址。之所以使用斐波那契數列,是為了讓資料更加雜湊,減少雜湊碰撞。具體來自數學公式的計算求值,公式:f(k) = ((k * 2654435769) >> X) << Y對於常見的32位整數而言,也就是 f(k) = (k * 2654435769) >> 28作用:與 HashMap 相比,ThreadLocal的資料結構只有陣列,並沒有連結串列和紅黑樹部分。而且經過我們測試驗證,斐波那契雜湊的效果更好,也更適合 ThreadLocal。用途:如果你的程式碼邏輯中需要儲存類似 ThreadLocal 的資料結構,又不想有嚴重雜湊碰撞,那麼就可以使用 斐波那契(Fibonacci)雜湊法。其實除此之外還有,除法雜湊法、平方雜湊法、隨機數法等。3. 梅森旋轉演算法(Mersenne twister)// Initializes mt[N] with a simple integer seed. This method is// required as part of the Mersenne Twister algorithm but need// not be made public.private final void setSeed(int seed) { // Annoying runtime check for initialisation of internal data // caused by java.util.Random invoking setSeed() during init. // This is unavoidable because no fields in our instance will // have been initialised at this point, not even if the code // were placed at the declaration of the member variable. if (mt == null) mt = new int[N]; // ---- Begin Mersenne Twister Algorithm ---- mt[0] = seed; for (mti = 1; mti < N; mti++) { mt[mti] = (MAGIC_FACTOR1 * (mt[mti-1] ^ (mt[mti-1] >>> 30)) + mti); } // ---- End Mersenne Twister Algorithm ----}
梅森旋轉演算法(Mersenne twister)是一個偽隨機數發生演算法。由松本真和西村拓士在1997年開發,基於有限二進位制欄位上的矩陣線性遞迴。可以快速產生高質量的偽隨機數,修正了古典隨機數發生演算法的很多缺陷。 最為廣泛使用Mersenne Twister的一種變體是MT19937,可以產生32位整數序列。
描述:梅森旋轉演算法分為三個階段,獲得基礎的梅森旋轉鏈、對於旋轉鏈進行旋轉演算法、對於旋轉演算法所得的結果進行處理。用途:梅森旋轉演算法是R、Python、Ruby、IDL、Free Pascal、PHP、Maple、Matlab、GNU多重精度運算庫和GSL的預設偽隨機數產生器。從C++11開始,C++也可以使用這種演算法。在Boost C++,Glib和NAG數值庫中,作為外掛提供。五、程式設計師數學入門與接觸到一個有難度的知識點學起來辛苦相比,是自己不知道自己不會什麼!就像上學時候老師說,你不會的就問我。我不會啥?我從哪問?一樣一樣的!
程式碼是對數學邏輯的實現,簡單的邏輯呼叫關係是很容易看明白的。但還有那部分你可能不知道的數學邏輯時,就很難看懂了。比如:擾動函式、負載因子、斐波那契(Fibonacci)等,這些知識點的學習都需要對數學知識進行驗證,否則也就學個概念,背個理論。
書到用時方恨少,在下還是個寶寶!
那如果你想深入的學習下程式設計師應該會的數學,推薦給你一位科技博主 Jeremy Kun 花了4年時間,寫成一本書 《程式設計師數學入門》。
這本書為程式設計師提供了大量精簡後數學知識,包括:多項式、集合、圖論、群論、微積分和線性代數等。同時在wiki部分還包括了抽象代數、離散數學、傅立葉分析和拓撲學等。
作者表示,如果你本科學過一些數學知識,那麼本書還是挺適合你的,不會有什麼難度。書中的前三章是基礎數學內容,往後的難度依次遞增。
六、總結單純的只會數學寫不了程式碼,能寫程式碼的不懂數學只能是CRUD碼農。數學知識幫助你設計資料結構和實現演算法邏輯,程式碼能力幫你駕馭設計模式和架構模型。多方面的知識結合和使用才是碼農和工程師的主要區別,也是是否擁有核心競爭力的關鍵點。學習知識有時候看不到前面的路有多遠,但哪怕是個泥坑,只要你不停的蠕動、折騰、翻滾,也能抓出一條泥鰍。知識的路上是發現知識的快樂,還學會知識的成就感,不斷的促使你前行。我是Java程式設計師,零基礎學習Java程式設計,可以關注或者是私信我,傳送“程式設計”即可收得到入口,分享我工作中的經驗,資料總結,開發總結,還有我總結的後端Java學習路線,開發工具等。