首頁>科技>

當今是資料的時代,資料科學居於顯赫地位。力學學者該如何順應這個時代,而不是置身時代之外,這是一個值得我們思考的問題。投身於時代之中,可能大展巨集圖;遊離於時代之外,必將喪失難逢的機遇。

近期,浙江大學王永副教授和亞利桑那州立大學姜漢卿教授課題組共同發展了一種新的資料驅動方法,該方法通過離散噪聲資料直接獲得經典物理及力學問題的變分律。這項工作剛發表於Journal of Mechanics and Physics of Solids. 下面就對其基本思路、實現方法做一簡單介紹。

資料科學的核心是演算法,或者說是優化方法。將資料科學成果應用於指導力學學科的研究已經取得了一些最新的研究成果。例如:貝葉斯機器學習指導下的超材料設計方法1,異質材料塑性特性的資料驅動模型2,以及應用遞迴神經網路的歷史和路徑依賴現象預測方法3 等。同時,也有一些工作利用資料來識別物理系統的代數不變數和微分方程,主要包括符號迴歸和稀疏迴歸兩類方法。

一般而言,在資料科學中,為了能較好地描述已有資料,特別是能給出較準確的預測資料,需要大量資料以作訓練和檢驗之用。那麼依據資料所建立的模型如果過於簡單,其模型外延性存疑;如果模型過於複雜則會過擬合。這是基於資料且僅基於資料的方法的本質缺陷,所以很難在資料科學的自身範疇內解決。

和資料方法對立的是理論方法。與資料方法追求結果的有效性不同,理論方法追求體系的完美性和結果的可解釋性。在這項工作中,作者試圖用理論指導的資料方法4(如圖1所示),將理論知識與資料相結合,從而不再是盲目的資料分析,而是部分地有目的的資料分析。

圖1. 資料與理論知識的關係4

具體做法是:將變分原理(知識)與資料方法(資料)相結合,在變分原理的框架下應用資料驅動方法,識別出物理系統的變分律。這種從時域和空間域離散資料出發,識別物理系統變分律的方法,與從物理系統變分律出發,計算時域和空間域離散資料的有限元方法,構成了互逆過程。因此該方法也可被視為“逆有限元方法”5(如圖2所示)。

圖2. 有限單元方法 vs. 變分框架下的資料驅動方法

圖3給出了該方法的具體操作步驟5。

圖3. 物理變分律自動化識別的資料驅動方法流程圖

概言之,針對具體物理系統,作者在變分框架下設定變分模式(知識I),其中待定的時域積分式則通過資料方法給出(資料)。進一步地,結合量綱匹配原則(知識II),從具有不同物理屬性值的同一系統的離散資料出發,應用資料方法可給出顯式包含物理屬性的積分式表示式。得到了具不同引數值的同一物理系統的時域積分式後,亦可通過符號迴歸方法,得出顯式包含物理屬性的積分式。該方法成功識別了自由落體、電場中的相對論粒子、van del Pol系統、Duffing 系統、二自由度耗散系統和連續體系統的變分律5(如圖4所示)。文中也討論了這種方法對資料量的敏感性,對資料品質(即噪聲)的魯棒性。由於該方法在處理時域積分時,可以在滿足時域端點變分為零的前提下任意選取變分模式,因此,在不需要大資料量和有一定噪聲的情況下,也可以得到令人滿意的識別結果。

圖4. 資料驅動方法識別的變分律彙總

這項工作以理論指導的資料方法重做了開普勒等科學巨匠做的工作。科學巨匠們以天分和勤奮識別出物理律;而理論指導的資料方法則捨棄了對天分的要求,經由規範的步驟給出了一致的結果。具體到力學變分律,Landau物理學力學卷就是從變分框架開始,而其中的時域積分式則通過伽利略變換從理論上逐步匯出6;Feynman在其物理學講義中則指出,確定此時域積分式需應用試錯方法,不斷測試直至滿意7。這項工作則擯棄了其中最難的部分,在變分框架下以規範的方式解決了問題。

這項工作嘗試了將力學原理與資料科學相結合的可能性。作者寄望這個初步的工作能夠聯接力學和資料科學兩個學科:不僅是將資料科學成果用於力學問題研究,同樣也可以由力學理論來指導資料科學的研究。

參考資料

1. Bessa, M.A., Glowacki, P., Houlder, M. (2019). Bayesian machine learning in metamaterial design: Fragile Becomes Supercompressible. Advanced Materials, 31(48), 1904845.

2. Liu, Z., Bessa, M.A., Liu, W.K. (2016). Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 306, 319-341.

3. Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M. A. (2019). Deep learning predicts path-dependent plasticity. Proceedings of the National Academy of Sciences, 116(52), 26414-26420.

4. Karpatne, A., Atluri, G., Faghmous, J.H., Steinbach, M., Banerjee, A., Ganguly, A., Shekhar, S., Samatova, N., Kumar, V. (2017). Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng., 29, 2318-2331.

5. Huang, Z.L., Tian, Y.P., Li, C.J., Lin, G., Wu, L.L., Wang, Y., Jiang, H. (2020). Data-driven automated discovery of variational laws hidden in physical systems. Journal of the Mechanics and Physics of Solids. 137, 103871.

6. Landau, L.D., Lifshitz, E.M. (2000). Mechanics. Butterworth-Heinemann, Oxford.

7. Feynman, R.P., Leighton, R.B., Sands, M. (2010). Lectures in Physics. Basic Book, New York.

點選https://www.sciencedirect.com/science/article/pii/S0022509619306246?via%3Dihub檢視論文原文。

最新評論
  • 整治雙十一購物亂象,國家再次出手!該跟這些套路說再見了
  • 安卓無線充電再突破!充電速度超有線!蘋果使用者:我不哭