通過了解學習tomcat如何處理併發請求,瞭解到執行緒池,鎖,佇列,unsafe類,下面的主要程式碼來自
java-jre:sun.misc.Unsafejava.util.concurrent.ThreadPoolExecutorjava.util.concurrent.ThreadPoolExecutor.Workerjava.util.concurrent.locks.AbstractQueuedSynchronizerjava.util.concurrent.locks.AbstractQueuedLongSynchronizerjava.util.concurrent.LinkedBlockingQueue
tomcat:org.apache.tomcat.util.net.NioEndpointorg.apache.tomcat.util.threads.ThreadPoolExecutororg.apache.tomcat.util.threads.TaskThreadFactoryorg.apache.tomcat.util.threads.TaskQueue
ThreadPoolExecutor#是一個執行緒池實現類,管理執行緒,減少執行緒開銷,可以用來提高任務執行效率,
構造方法中的引數有
Copypublic ThreadPoolExecutor( int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { }
corePoolSize 是核心執行緒數maximumPoolSize 是最大執行緒數keepAliveTime 非核心執行緒最大空閒時間(超過時間終止)unit 時間單位workQueue 佇列,當任務過多時,先存放在佇列threadFactory 執行緒工廠,建立執行緒的工廠handler 拒絕策略,當任務數過多,佇列不能再存放任務時,該如何處理,由此物件去處理。這是個介面,你可以自定義處理方式
ThreadPoolExecutor在Tomcat中http請求的應用#此執行緒池是tomcat用來在接收到遠端請求後,將每次請求單獨作為一個任務去處理使用,呼叫execute(Runnable)
初始化#org.apache.tomcat.util.net.NioEndpoint
建立執行緒池#NioEndpoint初始化的時候,建立了執行緒池
Copypublic void createExecutor() { internalExecutor = true; TaskQueue taskqueue = new TaskQueue(); //TaskQueue無界佇列,可以一直新增,因此handler 等同於無效 TaskThreadFactory tf = new TaskThreadFactory(getName() + "-exec-", daemon, getThreadPriority()); executor = new ThreadPoolExecutor(getMinSpareThreads(), getMaxThreads(), 60, TimeUnit.SECONDS,taskqueue, tf); taskqueue.setParent( (ThreadPoolExecutor) executor); }
建立工作執行緒worker#
線上程池建立時,呼叫prestartAllCoreThreads(), 初始化核心工作執行緒worker,並啟動
Copypublic int prestartAllCoreThreads() { int n = 0; while (addWorker(null, true)) ++n; return n; }
當addWorker 數量等於corePoolSize時,addWorker(null,ture)會返回false,停止worker工作執行緒的建立
addWorker時,會啟動worker執行緒
code: addWorker
接收任務放入佇列#每次客戶端過來請求(http),就會提交一次處理任務,poller物件的run方法中開始 -> processKey() -> processSocket() -> executor.execute()
code: poller -> processKey -> processSocket -> execute
ThreadPoolExecutor.execute#worker 從佇列中獲取任務執行,下面是將任務放入佇列的邏輯程式碼
ThreadPoolExecutor.execute(Runnable) 提交任務:
Copypublic void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); // worker數 是否小於 核心執行緒數 tomcat中初始化後,一般不滿足第一個條件,不會addWorker if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } // workQueue.offer(command),將任務新增到佇列 if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command); }
workQueue.offer(command) 最終完成了任務的提交(在tomcat處理遠端http請求時)。
workQueue.offer#TaskQueue 是 BlockingQueue 具體實現類,workQueue.offer(command)實際程式碼:
Copypublic boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() < capacity) { enqueue(node); //此處將任務新增到佇列 c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0;}// 新增任務到佇列/** * Links node at end of queue. * * @param node the node */private void enqueue(Node<E> node) { // assert putLock.isHeldByCurrentThread(); // assert last.next == null; last = last.next = node; //連結串列結構 last.next = node; last = node}
之後是worker的工作,worker在run方法中透過去getTask()獲取此處提交的任務,並執行完成任務。
執行緒池如何處理新提交的任務#新增worker之後,提交任務,因為worker數量達到corePoolSize,任務都會將放入佇列,而worker的run方法則是迴圈獲取佇列中的任務(不為空時),
worker run方法:
Copy/** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); }
迴圈獲取佇列中的任務#
runWorker(worker)方法 迴圈部分程式碼:
Copyfinal void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { //迴圈獲取佇列中的任務 w.lock(); // 上鎖 try { // 執行前處理 beforeExecute(wt, task); // 佇列中的任務開始執行 task.run(); // 執行後處理 afterExecute(task, thrown); } finally { task = null; w.completedTasks++; w.unlock(); // 釋放鎖 } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); } }
task.run()執行任務
鎖運用#鎖用於保證過程的有序,一般一段程式碼上鎖後,同一時間只允許一個執行緒去操作
ThreadPoolExecutor 使用鎖主要保證兩件事情,1.給佇列新增任務,釋放鎖之前,保證其他執行緒不能操作佇列-新增佇列任務)2.獲取佇列的任務,釋放鎖之前,保證其他執行緒不能操作佇列-取出佇列任務)在高併發情況下,鎖能有效保證請求的有序處理,不至於混亂
給佇列新增任務時上鎖#Copypublic boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node<E> node = new Node<E>(e); final ReentrantLock putLock = this.putLock; putLock.lock(); //上鎖 try { if (count.get() < capacity) { enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); //釋放鎖 } if (c == 0) signalNotEmpty(); return c >= 0; }
獲取佇列任務時上鎖#Copyprivate Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? // ...省略 for (;;) { try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); //獲取佇列中一個任務 if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } }public E take() throws InterruptedException { E x; int c = -1; final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); // 上鎖 try { while (count.get() == 0) { notEmpty.await(); //如果佇列中沒有任務,等待 } x = dequeue(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } finally { takeLock.unlock(); // 釋放鎖 } if (c == capacity) signalNotFull(); return x; }
其他#volatile#在併發場景這個關鍵字修飾成員變數很常見,
主要目的公共變數在被某一個執行緒修改時,對其他執行緒可見(實時)
sun.misc.Unsafe 高併發相關類API#執行緒池使用中,有平凡用到Unsafe類,這個類在高併發中,能做一些原子CAS操作,鎖執行緒,釋放執行緒等。
sun.misc.Unsafe 類是底層類,openjdk原始碼中有
原子操作資料#java.util.concurrent.locks.AbstractQueuedSynchronizer 類中就有保證原子操作的程式碼,
Copyprotected final boolean compareAndSetState(int expect, int update) { // See below for intrinsics setup to support this return unsafe.compareAndSwapInt(this, stateOffset, expect, update); }
對應Unsafe類的程式碼:
Copy//對應的java底層,實際是native方法,對應C++程式碼/*** Atomically update Java variable to <tt>x</tt> if it is currently* holding <tt>expected</tt>.* @return <tt>true</tt> if successful*/public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x);
方法的作用簡單來說就是 更新一個值,保證原子性操作當你要操作一個物件o的一個成員變數offset時,修改o.offset,高併發下為保證準確性,你在操作o.offset的時候,讀應該是正確的值,並且中間不能被別的執行緒修改來保證高併發的環境資料操作有效。
即 expected 期望值與記憶體中的值比較是一樣的expected == 記憶體中的值 ,則更新值為 x,返回true代表修改成功
否則,期望值與記憶體值不同,說明值被其他執行緒修改過,不能更新值為x,並返回false,告訴操作者此次原子性修改失敗。
注意一下能知道這是locks包下的類,ReentrantLock鎖的底層原理就與unsafe類有關,以及下面的park,unpark。執行緒可以透過這個原子操作放回true或者false的機制,定義自己獲取鎖成功還是失敗。
阻塞和喚醒執行緒#ThreadPoolExecute設計在請求佇列任務為空時,worker執行緒可以是等待或者中斷的(非銷燬狀態)。這種做法避免了沒必要的迴圈,節省了硬體資源,提高執行緒使用效率,
執行緒池的worker角色迴圈獲取佇列任務,如果佇列中沒有任務,worker.run 還是在等待的,不會退出執行緒,程式碼中用了notEmpty.await() 中斷此worker執行緒,放入一個等待執行緒佇列(區別去任務佇列);當有新任務需要時,再notEmpty.signal()喚醒此執行緒
底層分別是
park#unsafe.park() 阻塞(停止)當前執行緒public native void park(boolean isAbsolute, long time);
unpark#unsafe.unpark() 喚醒(取消停止)執行緒public native void unpark(Object thread);
這個操作是對應的,阻塞時,先將thread放入佇列,再park,喚醒時,從佇列拿出被阻塞的執行緒,unpark(thread)喚醒指定執行緒。
java.util.concurrent.locks.AbstractQueuedLongSynchronizer.ConditionObject 類中
透過連結串列存放執行緒資訊
Copy// 新增一個阻塞執行緒private Node addConditionWaiter() { Node t = lastWaiter; // If lastWaiter is cancelled, clean out. if (t != null && t.waitStatus != Node.CONDITION) { unlinkCancelledWaiters(); t = lastWaiter; } Node node = new Node(Thread.currentThread(), Node.CONDITION); if (t == null) firstWaiter = node; else t.nextWaiter = node; lastWaiter = node; //將新阻塞的執行緒放到連結串列尾部 return node; }// 拿出一個被阻塞的執行緒 public final void signal() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); Node first = firstWaiter; //連結串列中第一個阻塞的執行緒 if (first != null) doSignal(first); }// 拿到後,喚醒此執行緒final boolean transferForSignal(Node node) { LockSupport.unpark(node.thread); return true; }public static void unpark(Thread thread) { if (thread != null) UNSAFE.unpark(thread); }
這裡要區分park 和 compareAndSwapInt是兩個完全不同的東西,可以單獨或者組合使用,比如ReentrantLock實現鎖功能這兩個都需要
原文連結:https://www.cnblogs.com/Narule/p/14186606.html