一、安裝pycocotools方法1,直接GitHub原始碼安裝: pip install git+https://github.com/philferriere/cocoapi.git #subdirectory=PythonAPI 1方法2,安裝COCOAPI【Linux版】:
# COCOAPI=/path/to/clone/cocoapi
git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
cd $COCOAPI/PythonAPI
make
python3.5 setup.py install --user # 博主的Python版本為3.5,編譯時改為自己對應版本
如果在安裝過程中出現:“pycocotools/_mask.c: No such file or directory” 錯誤,可參考: 解決編譯 COCOAPI時出現的 “pycocotools/_mask.c: No such file or directory”錯誤
二、提取特定的類別提取程式碼:
from pycocotools.coco import COCOimport osimport shutilfrom tqdm import tqdmimport skimage.io as ioimport matplotlib.pyplot as pltimport cv2from PIL import Image, ImageDraw # 需要設定的路徑savepath="/path/to/generate/COCO/" dir=savepath+'images/'anno_dir=savepath+'annotations/'datasets_list=['train2017', 'val2017']#coco有80類,這裡寫要提取類的名字,以person為例 classes_names = ['person'] #包含所有類別的原coco資料集路徑'''目錄格式如下:$COCO_PATH----|annotations----|train2017----|val2017----|test2017'''dataDir= '/path/to/coco_orgi/' headstr = """\<annotation> <folder>VOC</folder> <filename>%s</filename> <source> <database>My Database</database> <annotation>COCO</annotation> <image>flickr</image> <flickrid>NULL</flickrid> </source> <owner> <flickrid>NULL</flickrid> <name>company</name> </owner> <size> <width>%d</width> <height>%d</height> <depth>%d</depth> </size> <segmented>0</segmented>"""objstr = """\ <object> <name>%s</name> <pose>Unspecified</pose> <truncated>0</truncated> <difficult>0</difficult> <bndbox> <xmin>%d</xmin> <ymin>%d</ymin> <xmax>%d</xmax> <ymax>%d</ymax> </bndbox> </object>""" tailstr = '''\</annotation>''' # 檢查目錄是否存在,如果存在,先刪除再建立,否則,直接建立def mkr(path): if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) # 可以建立多級目錄 else: os.makedirs(path)def id2name(coco): classes=dict() for cls in coco.dataset['categories']: classes[cls['id']]=cls['name'] return classes def write_xml(anno_path,head, objs, tail): f = open(anno_path, "w") f.write(head) for obj in objs: f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4])) f.write(tail) def save_annotations_and_imgs(coco,dataset,filename,objs): #將圖片轉為xml,例:COCO_train2017_000000196610.jpg-->COCO_train2017_000000196610.xml dst_anno_dir = os.path.join(anno_dir, dataset) mkr(dst_anno_dir) anno_path=dst_anno_dir + '/' + filename[:-3]+'xml' path=dataDir+dataset+'/'+filename print("img_path: ", path) dst_img_dir = os.path.join(img_dir, dataset) mkr(dst_img_dir) dst_imgpath=dst_img_dir+ '/' + filename print("dst_imgpath: ", dst_imgpath) img=cv2.imread(img_path) #if (img.shape[2] == 1): # print(filename + " not a RGB image") # return shutil.copy(img_path, dst_imgpath) head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2]) tail = tailstr write_xml(anno_path,head, objs, tail) def showimg(coco,dataset,img,classes,cls_id,show=True): global dataDir I=Image.open('%s/%s/%s'%(dataDir,dataset,img['file_name'])) #透過id,得到註釋的資訊 annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None) # print(annIds) anns = coco.loadAnns(annIds) # print(anns) # coco.showAnns(anns) objs = [] for ann in anns: class_name=classes[ann['category_id']] if class_name in classes_names: print(class_name) if 'bbox' in ann: bbox=ann['bbox'] xmin = int(bbox[0]) ymin = int(bbox[1]) xmax = int(bbox[2] + bbox[0]) ymax = int(bbox[3] + bbox[1]) obj = [class_name, xmin, ymin, xmax, ymax] objs.append(obj) draw = ImageDraw.Draw(I) draw.rectangle([xmin, ymin, xmax, ymax]) if show: plt.figure() plt.axis('off') plt.imshow(I) plt.show() return objs for dataset in datasets_list: #./COCO/annotations/instances_train2017.json annFile='{}/annotations/instances_{}.json'.format(dataDir,dataset) #使用COCO API用來初始化註釋資料 coco = COCO(annFile) #獲取COCO資料集中的所有類別 classes = id2name(coco) print(classes) #[1, 2, 3, 4, 6, 8] classes_ids = coco.getCatIds(catNms=classes_names) print(classes_ids) for cls in classes_names: #獲取該類的id cls_id=coco.getCatIds(catNms=[cls]) ids=coco.getImgIds(catIds=cls_id) print(cls,len(img_ids)) # imgIds=img_ids[0:10] for imgId in tqdm(img_ids): img = coco.loadImgs(imgId)[0] filename = img['file_name'] # print(filename) objs=showimg(coco, dataset, img, classes,classes_ids,show=False) print(objs) save_annotations_and_imgs(coco, dataset, filename, objs)
該指令碼執行完後會獲得需要提取的特定類別的圖片及其對應VOC格式的標註檔案.xml。下面還需將生成的.xml檔案轉化為COCO格式的.json檔案。
三、把VOC格式的標註檔案.xml轉為COCO格式的.json檔案轉換程式碼如下:
import xml.etree.ElementTree as ETimport osimport jsoncoco = dict()coco['images'] = []coco['type'] = 'instances'coco['annotations'] = []coco['categories'] = []category_set = dict()image_set = set()category_item_id = 0image_id = 20180000000annotation_id = 0def addCatItem(name): global category_item_id category_item = dict() category_item['supercategory'] = 'none' category_item_id += 1 category_item['id'] = category_item_id category_item['name'] = name coco['categories'].append(category_item) category_set[name] = category_item_id return category_item_iddef addImgItem(file_name, size): global image_id if file_name is None: raise Exception('Could not find filename tag in xml file.') if size['width'] is None: raise Exception('Could not find width tag in xml file.') if size['height'] is None: raise Exception('Could not find height tag in xml file.') image_id += 1 image_item = dict() image_item['id'] = image_id image_item['file_name'] = file_name image_item['width'] = size['width'] image_item['height'] = size['height'] coco['images'].append(image_item) image_set.add(file_name) return image_iddef addAnnoItem(object_name, image_id, category_id, bbox): global annotation_id annotation_item = dict() annotation_item['segmentation'] = [] seg = [] #bbox[] is x,y,w,h #left_top seg.append(bbox[0]) seg.append(bbox[1]) #left_bottom seg.append(bbox[0]) seg.append(bbox[1] + bbox[3]) #right_bottom seg.append(bbox[0] + bbox[2]) seg.append(bbox[1] + bbox[3]) #right_top seg.append(bbox[0] + bbox[2]) seg.append(bbox[1]) annotation_item['segmentation'].append(seg) annotation_item['area'] = bbox[2] * bbox[3] annotation_item['iscrowd'] = 0 annotation_item['ignore'] = 0 annotation_item['image_id'] = image_id annotation_item['bbox'] = bbox annotation_item['category_id'] = category_id annotation_id += 1 annotation_item['id'] = annotation_id coco['annotations'].append(annotation_item)def parseXmlFiles(xml_path): for f in os.listdir(xml_path): if not f.endswith('.xml'): continue bndbox = dict() size = dict() current_image_id = None current_category_id = None file_name = None size['width'] = None size['height'] = None size['depth'] = None xml_file = os.path.join(xml_path, f) print(xml_file) tree = ET.parse(xml_file) root = tree.getroot() if root.tag != 'annotation': raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag)) #elem is <folder>, <filename>, <size>, <object> for elem in root: current_parent = elem.tag current_sub = None object_name = None if elem.tag == 'folder': continue if elem.tag == 'filename': file_name = elem.text if file_name in category_set: raise Exception('file_name duplicated') #add img item only after parse <size> tag elif current_image_id is None and file_name is not None and size['width'] is not None: if file_name not in image_set: current_image_id = addImgItem(file_name, size) print('add image with {} and {}'.format(file_name, size)) else: raise Exception('duplicated image: {}'.format(file_name)) #subelem is <width>, <height>, <depth>, <name>, <bndbox> for subelem in elem: bndbox ['xmin'] = None bndbox ['xmax'] = None bndbox ['ymin'] = None bndbox ['ymax'] = None current_sub = subelem.tag if current_parent == 'object' and subelem.tag == 'name': object_name = subelem.text if object_name not in category_set: current_category_id = addCatItem(object_name) else: current_category_id = category_set[object_name] elif current_parent == 'size': if size[subelem.tag] is not None: raise Exception('xml structure broken at size tag.') size[subelem.tag] = int(subelem.text) #option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox> for option in subelem: if current_sub == 'bndbox': if bndbox[option.tag] is not None: raise Exception('xml structure corrupted at bndbox tag.') bndbox[option.tag] = int(option.text) #only after parse the <object> tag if bndbox['xmin'] is not None: if object_name is None: raise Exception('xml structure broken at bndbox tag') if current_image_id is None: raise Exception('xml structure broken at bndbox tag') if current_category_id is None: raise Exception('xml structure broken at bndbox tag') bbox = [] #x bbox.append(bndbox['xmin']) #y bbox.append(bndbox['ymin']) #w bbox.append(bndbox['xmax'] - bndbox['xmin']) #h bbox.append(bndbox['ymax'] - bndbox['ymin']) print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id, bbox)) addAnnoItem(object_name, current_image_id, current_category_id, bbox )if __name__ == '__main__': # 需要自己設定的地址,一個是已生成的是xml檔案的父目錄;一個是要生成的json檔案的目錄 xml_dir = r'/path/to/generate/COCO/annotations' json_dir = r'/path/to/save/COCO/annotations' dataset_lists = ['train2017', 'val2017'] for dataset in dataset_lists: xml_path = os.path.join(xml_dir, dataset) json_file = json_dir + '/instances_{}.json'.format(dataset) parseXmlFiles(xml_path) json.dump(coco, open(json_file, 'w'))
原參考指令碼不支援劃分訓練集和測試集,只能單個檔案進行轉換,本指令碼對此進行了簡單完善。獲得特定類別的影象和對應json檔案後,即可使用新獲取的資料集對特定目標檢測網路進行訓練。
最新評論