一、 等差數列有關概念 等差數列
如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。
通項公式
等差數列的通項公式為:an=a1+(n-1)d (1)
前n項和公式
前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均屬於正整數。
推論
1.從(1)式可以看出,an是n的一次函數(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0。
2. 從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
3.若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。
若m+n=2p,則am+an=2ap
4.其他推論
和=(首項+末項)×項數÷2
項數=(末項-首項)÷公差+1
首項=2和÷項數-末項
末項=2和÷項數-首項
末項=首項+(項數-1)×公差
推論3證明
若m,n,p,q∈N*,且m+n=p+q,則有若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq
如am+an=a1+(m-1)d+a1+(n-1)d
=2a1+(m+n-2)d
同理得,
ap+aq=2a1+(p+q-2)d
又因為
m+n=p+q ;
a1,d均為常數
所以
若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq
注:1.常數列不一定成立
2.m,p,q,n大於等於自然數
等差中項
在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數列的平均數。
且任意兩項am,an的關系為:an=am+(n-m)d
它可以看作等差數列廣義的通項公式。
一、 等差數列有關概念 等差數列
如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。
通項公式
等差數列的通項公式為:an=a1+(n-1)d (1)
前n項和公式
前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均屬於正整數。
推論
1.從(1)式可以看出,an是n的一次函數(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0。
2. 從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
3.若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。
若m+n=2p,則am+an=2ap
4.其他推論
和=(首項+末項)×項數÷2
項數=(末項-首項)÷公差+1
首項=2和÷項數-末項
末項=2和÷項數-首項
末項=首項+(項數-1)×公差
推論3證明
若m,n,p,q∈N*,且m+n=p+q,則有若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq
如am+an=a1+(m-1)d+a1+(n-1)d
=2a1+(m+n-2)d
同理得,
ap+aq=2a1+(p+q-2)d
又因為
m+n=p+q ;
a1,d均為常數
所以
若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq
注:1.常數列不一定成立
2.m,p,q,n大於等於自然數
等差中項
在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數列的平均數。
且任意兩項am,an的關系為:an=am+(n-m)d
它可以看作等差數列廣義的通項公式。