回覆列表
-
1 # 直率月下蝴蝶
-
2 # 用戶9557023478270
1、加法向量加法的三角形法則,已知向量AB、BC,再作向量AC,則向量AC叫做AB、BC的和,記作AB+BC,即有:AB+BC=AC。
2、減法AB-AC=CB,這種計算法則叫做向量減法的三角形法則,簡記為:共起點、連中點、指被減。-(-a)=a、a+(-a)=(-a)+a=0、a-b=a+(-b)。
3、數乘實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa。當λ>0時,λa的方向和a的方向相同,當λ。已知兩個非零向量a、b,那麼a×b叫做a與b的向量積或外積。向量積幾何意義是以a和b為邊的平行四邊形面積,即S=|a×b|。6、混合積給定空間三向量a、b、c,向量a、b的向量積a×b,再和向量c作數量積(a×b)·c,所得的數叫做三向量a、b、c的混合積,記作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c。物理學中的速度與力的平行四邊形概念是向量理論的一個重要起源之一。18世紀中葉之後,歐拉、拉格朗日、拉普拉斯和柯西等的工作,直接導致了在19世紀中葉向量力學的建立。同時,向量概念是近代數學中重要和基本的概念之一,有著深刻的幾何背景。它始於萊布尼茲的位置幾何。現代向量理論是在複數的幾何表示這條線索上發展起來的。18世紀,由於在一些數學的推導中用到複數,複數的幾何表示成為人們探討的熱點。哈密頓在做3維複數的模擬物的過程中發現了四元數。隨後,吉布斯和亥維賽在四元數基礎上創造了向量分析系統,最終被廣為接受。
三角函數加減法公式有如下:
sin(α+β)=sinαcosβ+cosαsinβ。
sin(α-β)=sinαcosβ-cosαsinβ。
cos(α+β)=cosαcosβ-sinαsinβ。
cos(α-β)=cosαcosβ+sinαsinβ。
三角函數公式相關:
三角函數是數學中屬於初等函數中的超越函數的函數。它們的本質是任何角的集合與一個比值的集合的變量之間的映射。通常的三角函數是在平面直角坐標系中定義的。其定義域為整個實數域。另一種定義是在直角三角形中,但並不完全。現代數學把它們描述成無窮數列的極限和微分方程的解,將其定義擴展到複數系。
三角函數公式看似很多、很複雜,但只要掌握了三角函數的本質及內部規律,就會發現三角函數各個公式之間有強大的聯繫。而掌握三角函數的內部規律及本質也是學好三角函數的關鍵所在。