回覆列表
  • 1 # 肥妹變肥婆

    偏導數:表示固定面上一點的切線斜率。

    偏導數 f'x(x0,y0) 表示固定面上一點對 x 軸的切線斜率;偏導數 f'y(x0,y0) 表示固定面上一點對 y 軸的切線斜率。

    高階偏導數:如果二元函數 z=f(x,y) 的偏導數 f'x(x,y) 與 f'y(x,y) 仍然可導,那麼這兩個偏導函數的偏導數稱為 z=f(x,y) 的二階偏導數。二元函數的二階偏導數有四個:f"xx,f"xy,f"yx,f"yy。

    f"xy與f"yx的區別在於:前者是先對 x 求偏導,然後將所得的偏導函數再對 y 求偏導;後者是先對 y 求偏導再對 x 求偏導。當 f"xy 與 f"yx 都連續時,求導的結果與先後次序無關。

    偏導數(函數的變化率)

    在數學中,一個多變量的函數的偏導數,就是它關於其中一個變量的導數而保持其他變量恆定(相對於全導數,在其中所有變量都允許變化)。偏導數在向量分析和微分幾何中是很有用的。

    引入

    在一元函數中,導數就是函數的變化率。對於二元函數研究它的“變化率”,由於自變量多了一個,情況就要複雜的多。在 xOy 平面內,當動點由 P(x0,y0) 沿不同方向變化時,函數 f(x,y) 的變化快慢一般來說是不同的,因此就需要研究 f(x,y) 在 (x0,y0) 點處沿不同方向的變化率。

    在這裡我們只學習函數 f(x,y) 沿著平行於 x 軸和平行於 y 軸兩個特殊方位變動時, f(x,y) 的變化率。偏導數的表示符號為:∂。偏導數反映的是函數沿坐標軸正方向的變化率。

    定義(x方向的偏導)

    設有二元函數 z=f(x,y) ,點(x0,y0)是其定義域D 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函數 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。

    如果 △z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函數 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f'x(x0,y0)或。函數 z=f(x,y) 在(x0,y0)處對 x 的偏導數,實際上就是把 y 固定在 y0看成常數後,一元函數z=f(x,y0)在 x0處的導數。

    y方向的偏導

    同樣,把 x 固定在 x0,讓 y 有增量 △y ,如果極限存在那麼此極限稱為函數 z=(x,y) 在 (x0,y0)處對 y 的偏導數。記作f'y(x0,y0)。

  • 蘿蔔絲粉條餡餅的做法?