首頁>
6
回覆列表
  • 1 # 無為輕狂

    1.當b=0時,原方程為dy/dx=ax+c

    ==>dy=(ax+c)dx

    ==>y=ax²/2+cx+C (C是積分常數)

    故此時,原方程的通解是y=ax²/2+cx+C (C是積分常數);

    2.當b≠0時,先解齊次方程dy/dx=by

    ∵dy/dx=by ==>dy/y=bdx

    ==>ln|y|=bx+ln|C| (C是積分常數)

    ==>y=Ce^(bx)

    ∴齊次方程dy/dx=by的通解是y=Ce^(bx) (C是積分常數)

    ∴設dy/dx=ax+by+c的通解為y=C(x)e^(bx) (C(x)是關於x的函數)

    ∵代入原方程得C'(x)e^(bx)=ax+c

    ==>C'(x)=(ax+c)e^(-bx)

    ==>C(x)=-(ax+c)e^(-bx)/b-a/b∫e^(-bx)dx

    ∴C(x)=-(ax+c)e^(-bx)/b-a/b²e^(-bx)+C (C是積分常數)

    ∴y=-(ax+c)/b-a/b²+Ce^(bx)

    故此時,原方程的通解是y=-(ax+c)/b-a/b²+Ce^(bx) (C是積分常數)

  • 2 # LY後來我們還能邂逅嗎

    ∵齊次方程y''-6y'+9y=0的特徵方程是λ²-6λ+9=(λ-3)²=0

    ∴λ1=λ2=3

    ∵非齊次方程中3是特徵方程的重根

    ∴特解y*=x²(ax²+bx+c)e^3x

    特點:

    常微分方程的概念、解法、和其它理論很多,比如,方程和方程組的種類及解法、解的存在性和唯一性、奇解、定性理論等等。下面就方程解的有關幾點簡述一下,以了解常微分方程的特點。

    求通解在歷史上曾作為微分方程的主要目標,一旦求出通解的表達式,就容易從中得到問題所需要的特解。也可以由通解的表達式,了解對某些參數的依賴情況,便於參數取值適宜,使它對應的解具有所需要的性能,還有助於進行關於解的其他研究。

  • 蘿蔔絲粉條餡餅的做法?