在已知標準差的情況下,方差=標準差*標準差=標準差的平方。
均值:一般指平均數。
平均數是表示一組數據集中趨勢的量數,是指在一組數據中所有數據之和再除以這組數據的個數。它是反映數據集中趨勢的一項指標。解答平均數應用題的關鍵在於確定“總數量”以及和總數量對應的總份數。在統計工作中,平均數(均值)和標準差是描述數據資料集中趨勢和離散程度的兩個最重要的測度值。
標準差(Standard Deviation) :
中文環境中又常稱均方差,是離均差平方的算術平均數的平方根,用σ表示。標準差是方差的算術平方根。標準差能反映一個數據集的離散程度。平均數相同的兩組數據,標準差未必相同。
方差:
(variance)是在概率論和統計方差衡量隨機變量或一組數據時離散程度的度量。概率論中方差用來度量隨機變量和其數學期望(即均值)之間的偏離程度。統計中的方差(樣本方差)是每個樣本值與全體樣本值的平均數之差的平方值的平均數。在許多實際問題中,研究方差即偏離程度有著重要意義。
方差是衡量源數據和期望值相差的度量值。
例如,對於一個有六個數的數集2,3,4,5,6,8,其均值、標準差以及方差可通過以下步驟計算:
(1)計算平均值:
(2 + 3 + 4 + 5+ 6 + 8)/6 = 30 /6 = 5
(2)計算方差:
(2 – 5)^2 = (-3)^2= 9
(3 – 5)^2 = (-2)^2= 4
(4 – 5)^2 = (-1)^2= 0
(5 – 5)^2 = 0^2= 0
(6 – 5)^2 = 1^2= 1
(8 – 5)^2 = 3^2= 9
(3)計算平均方差:
(9 + 4 + 0 + 0+ 1 + 9)/6 = 24/6 = 4
(4)計算標準差:
√4 = 2
在已知標準差的情況下,方差=標準差*標準差=標準差的平方。
均值:一般指平均數。
平均數是表示一組數據集中趨勢的量數,是指在一組數據中所有數據之和再除以這組數據的個數。它是反映數據集中趨勢的一項指標。解答平均數應用題的關鍵在於確定“總數量”以及和總數量對應的總份數。在統計工作中,平均數(均值)和標準差是描述數據資料集中趨勢和離散程度的兩個最重要的測度值。
標準差(Standard Deviation) :
中文環境中又常稱均方差,是離均差平方的算術平均數的平方根,用σ表示。標準差是方差的算術平方根。標準差能反映一個數據集的離散程度。平均數相同的兩組數據,標準差未必相同。
方差:
(variance)是在概率論和統計方差衡量隨機變量或一組數據時離散程度的度量。概率論中方差用來度量隨機變量和其數學期望(即均值)之間的偏離程度。統計中的方差(樣本方差)是每個樣本值與全體樣本值的平均數之差的平方值的平均數。在許多實際問題中,研究方差即偏離程度有著重要意義。
方差是衡量源數據和期望值相差的度量值。
例如,對於一個有六個數的數集2,3,4,5,6,8,其均值、標準差以及方差可通過以下步驟計算:
(1)計算平均值:
(2 + 3 + 4 + 5+ 6 + 8)/6 = 30 /6 = 5
(2)計算方差:
(2 – 5)^2 = (-3)^2= 9
(3 – 5)^2 = (-2)^2= 4
(4 – 5)^2 = (-1)^2= 0
(5 – 5)^2 = 0^2= 0
(6 – 5)^2 = 1^2= 1
(8 – 5)^2 = 3^2= 9
(3)計算平均方差:
(9 + 4 + 0 + 0+ 1 + 9)/6 = 24/6 = 4
(4)計算標準差:
√4 = 2