secx的原函數
secx的原函數為:ln|secx+tanx|+C
求secx的原函數,就是對secx不定積分。
∫secx
=∫secx(secx+tanx)dx/(secx+tanx)
=∫(sec²x+tanxsecx)dx/(secx+tanx)
=∫d(tanx+secx)/(secx+tanx)
=ln|secx+tanx|+C
擴展資料:
分部積分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
兩邊積分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,這就是分部積分公式
也可簡寫為:∫ v du = uv - ∫ u dv
不定積分的公式
1、∫ a dx = ax + C,a和C都是常數
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a為常數且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
secx的原函數
secx的原函數為:ln|secx+tanx|+C
求secx的原函數,就是對secx不定積分。
∫secx
=∫secx(secx+tanx)dx/(secx+tanx)
=∫(sec²x+tanxsecx)dx/(secx+tanx)
=∫d(tanx+secx)/(secx+tanx)
=ln|secx+tanx|+C
擴展資料:
分部積分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
兩邊積分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,這就是分部積分公式
也可簡寫為:∫ v du = uv - ∫ u dv
不定積分的公式
1、∫ a dx = ax + C,a和C都是常數
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a為常數且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C