回覆列表
-
1 # 無為輕狂
-
2 # 快意江湖679
將一n階可逆矩陣A和n階單位矩陣I寫成一個nX2n的矩陣:
對B施行初等行變換,即對A與I進行完全相同的若百幹初等行變換,目標是把A化為單位矩陣。當A化為單位矩陣I的同時,B的右一半矩陣同時化為了A的逆矩陣。
如求:
的逆矩陣A-1。
故A可逆並且,由右一半可得逆矩陣A-1=
可逆矩陣的性質定理
1、可逆矩陣一定是方陣。
2、如果矩陣A是可逆的,其逆矩陣是唯一回的。
3、A的逆矩陣的逆矩陣還是A。記作(A-1)-1=A。
4、可逆矩陣A的轉置矩陣AT也可逆,並且(AT)-1=(A-1)T (轉置的逆等於逆的轉置)
5、若矩陣A可逆,則矩陣A滿足消去律。即AB=O(或BA=O),則B=O,AB=AC(或BA=CA),則B=C。
6、兩個答可逆矩陣的乘積依然可逆。
7、矩陣可逆當且僅當它是滿秩矩陣。
不一定成立
1:兩個方陣中有一個是數量矩陣時(數量矩陣是指主對角線上為同一不為0的數,其他的項全是是0,它是方陣),此時矩陣乘法滿足交換律.
2:當兩矩陣相等或其中一個為0矩陣時,矩陣乘法滿足交換律,單位矩陣就是一個數量矩陣。
3:方陣A,
B滿足AB=A+B.
則A,
B乘積可交換,
即AB=BA