首頁>
4
回覆列表
  • 1 # 上心下心3

    三角形的外心向量推論是指,如果三角形的三個頂點分別為A,B,C,那麼外心向量的方向為(B-A)+(C-A),其長度為2*面積/邊長。

  • 2 # 用戶5435842789945

    三角形外心向量公式:PA+PB+PC=0。三角形外接圓的圓心叫做三角形的外心。三角形外接圓的圓心也就是三角形三邊垂直平分線的交點,三角形的三個頂點就在這個外接圓上。三角形是由同一平面內不在同一直線上的三條線段‘首尾’順次連接所組成的封閉圖形,在數學、建築學有應用。

    常見的三角形按邊分有普通三角形(三條邊都不相等),等腰三角(腰與底不等的等腰三角形、腰與底相等的等腰三角形即等邊三角形);按角分有直角三角形、銳角三角形、鈍角三角形等,其中銳角三角形和鈍角三角形統稱斜三角形

    01

    三角形重心“G”

    三角形三邊的中線相交於一點

    1.重心到頂點距離與重心到對邊中點距離之比為2:1。

    2.重心和三個頂點構成的三角形面積相等。即:重心到三邊的距離與三邊的長成反比。

    3.重心到三角形三個頂點距離平方和最小。

    4.三角形重心坐標是頂點坐標的算術平均。

    5.三角形重心的向量式:

    02

    三角形外心“O”

    三角形三邊垂直平分線相交於一點

    1.外心到三頂點距離相等。

    2.銳角三角形外心在三角形內,

    鈍角三角形外心在三角形外,

    直角三角形外心為斜邊中點。

    3.三角形外心向量式:

    03

    三角形垂心“H"

    三角形三條高線相交於一點

    1.銳角三角形垂心是以三個垂足為頂點的

    三角形的內心。

    2.三角形垂心H,外心O,則有:

    3.三角形任一頂點到垂心的距離等於外心

    到對邊距離的2倍。

    3.三角形垂心分每條高線兩段乘積相等。

    4.三角形三個頂點、三處垂足和垂心,

    組成6個四點共圓。

    5.△ABC,△ABH,△BCH,△ACH

    有相等的外接圓。

    6.三角形垂心向量式:

    04

    三角形內心"I"

    三角形三個內角平分線相交於一點

    1.直角三角形內切圓半徑:

    2.橢圓、雙曲線焦點三角形內心:

    3.橢圓、雙曲線焦點三角形旁心:

    4.三角形內心向量式: