兩個正整數只有一個公約數1時、它們的關系叫做互質、如3和11互質。
兩個正整數只有一個公約數1時、它們的關系叫做互質、如3和11互質。1和任何數都成倍數關系,但和任何數都互質。因為1的因數只有1,而互質數的原則是:只要兩數的公因數只有1時,就說兩數是互質數。因為1只有一個因數所以1既不是質數(素數),也不是合數,無法再找到1和其他數的別的公因數了。1和-1與所有整數互素,而且它們是唯一與0互素的整數。
(1)兩個數的公因數只有1的兩個非零自然數,叫做互質數;舉例:2和3,公因數只有1,為互質數;
(2)多個數的若干個最大公因數只有1的正整數,叫做互質數;
(3)兩個不同的質數,為互質數;
(4)1和任何自然數互質。兩個不同的質數互質。一個質數和一個合數,這兩個數不是倍數關系時互質。不含相同質因數的兩個合數互質;
(5)任何相鄰的兩個數互質;
(6)任取出兩個正整數他們互質的概率(最大公約數為一)為6/π^2。
公約數只有1的兩個數叫做互質數。根據互質數的概念可以對一組數是否互質進行判斷。如:9和11的公約數只有1,則它們是互質數。
根據互質數的定義,可總結出一些規律,利用這些規律能迅速判斷一組數是否互質。
(1)兩個不相同的質數一定是互質數。如:7和11、17和31是互質數。
(2)兩個連續的自然數一定是互質數。如:4和5、13和14是互質數。
(3)相鄰的兩個奇數一定是互質數。如:5和7、75和77是互質數。
(4)1和其他所有的自然數一定是互質數。如:1和4、1和13是互質數。
(5)兩個數中的較大一個是質數,這兩個數一定是互質數。如:3和19、16和97是互質數。
(6)兩個數中的較小一個是質數,而較大數是合數且不是較小數的倍數,這兩個數一定是互質數。如:2和15、7和54是互質數。
(7)較大數比較小數的2倍多1或少1,這兩個數一定是互質數。如:13和27、13和25是互質數。
如果兩個數都是合數,可先將兩個數分別分解質因數,再看兩個數是否含有相同的質因數。如果沒有,這兩個數是互質數。如:130和231,先將它們分解質因數:130=2×5×13,231=3×7×11。分解後,發現它們沒有相同的質因數,則130和231是互質數。
互質是公約數只有1的兩個整數,叫做互質整數。公約數只有1的兩個自然數,叫做互質自然數,後者是前者的特殊情形。
兩個正整數只有一個公約數1時、它們的關系叫做互質、如3和11互質。
兩個正整數只有一個公約數1時、它們的關系叫做互質、如3和11互質。1和任何數都成倍數關系,但和任何數都互質。因為1的因數只有1,而互質數的原則是:只要兩數的公因數只有1時,就說兩數是互質數。因為1只有一個因數所以1既不是質數(素數),也不是合數,無法再找到1和其他數的別的公因數了。1和-1與所有整數互素,而且它們是唯一與0互素的整數。
(1)兩個數的公因數只有1的兩個非零自然數,叫做互質數;舉例:2和3,公因數只有1,為互質數;
(2)多個數的若干個最大公因數只有1的正整數,叫做互質數;
(3)兩個不同的質數,為互質數;
(4)1和任何自然數互質。兩個不同的質數互質。一個質數和一個合數,這兩個數不是倍數關系時互質。不含相同質因數的兩個合數互質;
(5)任何相鄰的兩個數互質;
(6)任取出兩個正整數他們互質的概率(最大公約數為一)為6/π^2。
公約數只有1的兩個數叫做互質數。根據互質數的概念可以對一組數是否互質進行判斷。如:9和11的公約數只有1,則它們是互質數。
根據互質數的定義,可總結出一些規律,利用這些規律能迅速判斷一組數是否互質。
(1)兩個不相同的質數一定是互質數。如:7和11、17和31是互質數。
(2)兩個連續的自然數一定是互質數。如:4和5、13和14是互質數。
(3)相鄰的兩個奇數一定是互質數。如:5和7、75和77是互質數。
(4)1和其他所有的自然數一定是互質數。如:1和4、1和13是互質數。
(5)兩個數中的較大一個是質數,這兩個數一定是互質數。如:3和19、16和97是互質數。
(6)兩個數中的較小一個是質數,而較大數是合數且不是較小數的倍數,這兩個數一定是互質數。如:2和15、7和54是互質數。
(7)較大數比較小數的2倍多1或少1,這兩個數一定是互質數。如:13和27、13和25是互質數。
如果兩個數都是合數,可先將兩個數分別分解質因數,再看兩個數是否含有相同的質因數。如果沒有,這兩個數是互質數。如:130和231,先將它們分解質因數:130=2×5×13,231=3×7×11。分解後,發現它們沒有相同的質因數,則130和231是互質數。