首頁>
2
回覆列表
  • 1 # 肥妹變肥婆

    值域是有限區間的函數,是有界函數。值域是無限區間的函數是無界函數。

    例如,正弦函數y=sinx,對任意x∈(-∞,+∞),|sinx|≤1恆成立,所以y=sinx是R上的有界函數。

    有的函數在定義域的部分區間上可能是有界的。

    例如,一次函數y=2x+1,定義域(-∞,+∞),值域(-∞,+∞).它在定義域(-∞,+∞)上是無界的。但是它在區間(-1,2)上,值域(-1,5),它是有界的。事實上,它在定義域的任意的真子集上都是有界的。

    有的函數在定義域的部分區間上可能是無界的。

    例如,反比例函數y=1/x,定義域(-∞,0)∪(0,+∞),值域(-∞,0)∪(0,+∞).它在定義域(-∞,0)∪(0,+∞)上是無界的。它在區間(0,1)內,值域(1,+∞),它是無界的. 當然,它在區間(1,+∞)內,值域(0,1),它是有界的。