-
1 # 帶00後奔跑
-
2 # 卡普基計劃參與者
代數,幾何,等只是解決數理問題形式方法。而數學是包含問題,解決問題使用數字邏輯解釋問題的來龍去脈,一道題可以用代數,也可以用微積分或其它公式解決。關鍵在於如何選擇適合的公式,保證數字邏輯的正確性和簡單化。
-
3 # 杭州黃金眼
代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和複數,以及以它們為係數的多項式的代數運算理論和方法的數學分支學科.初等代數是更古老的算術的推廣和發展.在古代,當算術裡積累了大量的,關於各種數量問題的解法後,為了尋求有系統的、更普遍的方法,以解決各種數量關係的問題,就產生了以解方程的原理為中心問題的初等代數
-
4 # 大呆楊
數學是大概念,代數是小概念。
數學是研究現實世界的空間形式和數量關係的科學,包括算術、代數、幾何、三角、微積分等 。
代數是研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支。
初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及瞭解變數的概念和如何建立多項式並找出它們的根。
代數的研究物件不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關係及其性質,而對於“數本身是什麼”這樣的問題並不關心。常見的代數結構型別有群、環、域、模、線性空間等。
-
5 # 機關大幹部聊公考面試
簡單概括一下,代數表面是數學的一個組成部分,實際是數學研究的一項最重要的工具。
一、為什麼說代數是數學的一個組成部分?
數學從學習內容上來看,小學階段的基本數學運算和基本的邏輯判斷,這個時候基本上都是透過數字來研究問題解決問題。到了小學的高年級階段,我們開始接觸方程,也就是用字母來代替數字或量進行運算,從此代數走進了數學的事業,成為數學學科的一部分。中學以前有門課就叫代數,所以從這個意義上講,代數是數學的一個部分,是一個更小的概念。
二、為什麼說代數是數學最重要的研究工具?
現代數學的產生,就是以迪卡爾為代表的一批數學大師引入了座標系,引入了方程,引入了未知數。從而使數學變成一門真正的科學。也是很多數學不好的同學和家長經常感慨,為什麼要發明這些奇怪東西,為什麼要弄得我們這麼痛苦?而代數作為一種工具,貫穿了平面幾何立體幾何、直線曲線、高等數學、運籌學、數理統計等數學的各個分支可以這樣講,從中學階段往後代數就不僅成為數學的一個基本工具,幾乎和數學融為一體。也成為自然科學,例如物理化學生物等學科的一個最重要的工具。
三、從小就要培養孩子的代數思維。既然用字母代替數字如此重要,我們從小就要鍛鍊孩子,學會抽象思維,學會用方塊三角等一些形象化的圖形來代表一定的數量關係,才能在以後讓孩子更好的適應這種情況,所以我們會發現在奧數課本上和我們的數學教材上,有很多地方已經在有意無意的引出這種概念,這都是為中學以後階段在做充分的準備。
-
6 # 追夢人1967
我們上小學的時候叫“算術”,初一初二叫“數學”,初三了又分“幾何”“代數”。代數還好學一點,幾何都是證明題,學也學不會。
-
7 # 使用者610932334526652
簡單概括一下,代數表面是數學的一個組成部分,實際是數學研究的一項最重要的工具。
一、為什麼說代數是數學的一個組成部分?
數學從學習內容上來看,小學階段的基本數學運算和基本的邏輯判斷,這個時候基本上都是透過數字來研究問題解決問題。到了小學的高年級階段,我們開始接觸方程,也就是用字母來代替數字或量進行運算,從此代數走進了數學的事業,成為數學學科的一部分。中學以前有門課就叫代數,所以從這個意義上講,代數是數學的一個部分,是一個更小的概念。
二、為什麼說代數是數學最重要的研究工具?
現代數學的產生,就是以迪卡爾為代表的一批數學大師引入了座標系,引入了方程,引入了未知數。從而使數學變成一門真正的科學。也是很多數學不好的同學和家長經常感慨,為什麼要發明這些奇怪東西,為什麼要弄得我們這麼痛苦?而代數作為一種工具,貫穿了平面幾何立體幾何、直線曲線、高等數學、運籌學、數理統計等數學的各個分支可以這樣講,從中學階段往後代數就不僅成為數學的一個基本工具,幾乎和數學融為一體。也成為自然科學,例如物理化學生物等學科的一個最重要的工具。
三、從小就要培養孩子的代數思維。既然用字母代替數字如此重要,我們從小就要鍛鍊孩子,學會抽象思維,學會用方塊三角等一些形象化的圖形來代表一定的數量關係,才能在以後讓孩子更好的適應這種情況,所以我們會發現在奧數課本上和我們的數學教材上,有很多地方已經在有意無意的引出這種概念,這都是為中學以後階段在做充分的準備。
-
8 # 紅帶小王子
我猜您是位初中生媽媽吧。
小學數學不區分學科,全部內容集中在一本書,叫做《數學》。
初中數學區分學科,分別是幾何、代數這兩本書。
其實代數里面也包括機率、統計的內容。但現在新課標又將二者合二為一,不再區分,
高中數學同樣區分學科,但內容更加高深和細化。主要科目包括代數,立體幾何、解析幾何。
大學中的科目就更多了,包括高等數學、機率論、線性代數等。
希望你孩子考個好成績,快快樂樂過大年。
-
9 # 老楊老師2
代數,就是用字母代替數。
用多少個字母,任意。代替什麼樣的數,任意。
代替數,幹什麼?代替數進行運算。可以進行怎麼樣的運算呢?所有的運算。可以算幾次?任意幾次都行。
運算的結果,是什麼?還是一個數。
那麼,我們用字母代替數,並且進行了運算,算的結果還是一個數,這個數,可以用一個字母代替嗎?可以的。
所以,代數,是人類思維進行的第二次和第三次抽象。
第一次抽象,就是隻看數量,抽象出“數字”這個純粹的意念。數字不是實物,是一個抽象出來的概念。
具體的數字,很多的,完全不同的,大小區別很大的數字,再抽象成“用一個字母代替”,這是第二次抽象。
用字母代替了數學,並且進行了運算,運算結果還是一個數(函式的意識開始),這是第三次抽象。
那麼,數學呢?
數學是早就空間中位置和數量關係的學問。一開始研究的都是確定關係,後來擴充成研究相關關係。
因為,我們的宇宙中,只有空間和能量。研究空間位置和數量,其實也就研究了這個宇宙中幾乎所有的內容了。這就是數學。
當然,數學所早就的,除了宇宙中所有內容,還有很多是宇宙中可能存在,但也許並不存在,以及它們存在或者不存在的理由的學問。
所以,代數是數學研究開始的時候,使用的一個工具。當然,代數在後來的集合論以後,概念又進一步擴充和延伸,也就是,代數到目前為止,還是研究數學的主要工具。
希望您聽懂了。
希望我們的數字老師,用心體會體會。如有不對,還請批評指正。
-
10 # 196807261278
從我個人的觀點出發而論:
代數是抽象機何的又一個代名詞。
代數一次方是指平面中的一條線,二次方是指平面中的曲線……,一個代數字母就是一個幾何圖形,兩個字母就是同一個平面中的兩個幾何圖形,以此類推。
同樣地,我就想像立體中的幾何與代數方程同樣可以對等地成立。但我未學過,但肯定成立!
我就不說代數與數學的區別與聯絡了。
-
11 # l204061011為民
代數和數學的關係我理解是戰略和戰術的關係差不多。代數是數學中的一個子目,戰術是戰略中的一埸戰鬥而已!不知對否?請各方指教!
-
12 # 駱駝老房
代數是數學的一部分。就拿初等數學(中學所學的數學)來說,除了代數之外,數學還包含平面幾何、立體幾何、三角、平面解析幾何等幾個方面。上大學後,理工科學生一般都得學線性代數、數學分析(微積分)、機率論與數理統計等,數學專業的還要學數論、集合論、邏輯代數、圖論、實變函式、複變函式、泛函分析、微分方程、拓撲學、模糊數學等等。
-
13 # 嚴章忠
代數,是數學的研究工具,代數,是用字母代替數字的數學,並可以進行運算。
代數,在人們的勞動生產和生活當中也有廣泛的應用。比如,當前的汽車保有量非常之大,如果車牌照不用字母代替數字,可不得了,如光用自然數字,最起碼有十位數或更多,很不方便各方面的工作,啟用代數,可以五位數或六位數,即簡單又方便!
-
14 # 使用者56829639294
我七一年的只讀了五年小學,在五年級開始才學了點方程全還給老師了,沒真正學過代數!就我個人理解是這樣的:數學是戰略家,代數是軍事家,它只是數學的一個組成部份吧!不知道我這樣說得對嗎?
-
15 # 豹子7758
代數的本意原於假設,使數學的算式簡單化。中國古代算朮永遠發揮了大腦的極致。代數把某數設為x,運算簡單。但數學不一樣,拿前提求它結果。我認為算朮與代數相比,算朮更難!
-
16 # 我就是我23465269
數學研究數量關係和空間形式,包括:數與代數,空間與圖形,統計與機率,綜合與實踐四大板塊,代數只是四大板塊之一的一半,是用字母表示數的數學。
-
17 # 剪不斷的鄉情
簡單的說數學和代數不是並列學科關係,而是整體和部分關係。數學包括幾何、代數、分析和拓僕四大分支,代數只是其中的一個分支。我們在小學階段主要是數字的運算,中學階段才用字母代替數字去更深的研究它的運理。中學階段我們只接觸了數學領域的代數和幾何兩個部分,分析和拓僕是高等數學的研究犯圍,也是數學領域用幾何和代數無法解決的新的解決(研究)方法。
-
18 # 友誼橋5
乍一看,讀書少的人會懵,其實問題太簡單,數學是統稱,代數是數學的一部分。
形象來說:數學若是一棵樹,那代數就是一樹枝
數學包含代數,代數是數學的部分反映。
-
19 # 天澤方圓之楊春順
數學是運用數字來進行各種運算的一種技巧或者技術。而代數則是利用未知數來代表數字,來反映在數學中某種算式的普遍規律。前者如1+1=2、10X10=100、100^3=1000等,而後者如2a=y、4a^2=y等。
-
20 # 味哎兒
成年人不會這樣設問。
數學是人努力把控萬事萬物的動手時的參照值,甚至可透過數學掌握宇宙,這種可令人操作完成的參照值,被古人定名成數學。即用數的數值為人行動裡的參照準則之學。
代數屬於數學內項之一,有別而不能分割,如頭與心,歸身體,分開沒命及殘缺一樣。
代數現應是小學五年級11歲小孩須掌握的算術式。
但,在正常的做實業的成年人身上,僅是代表項,即派出一個頂替自己去同他人交易者,也就是自己的全權代表。
歸數學有理數無理數內的合併同類項,人用時如分類相同,也就是把同類品歸弄到一塊。
只不過同類品內的這一個那一個,再用xyz表示,且統計出各數量。
但,實用時xyz可能是張三李四王二,或蘋果梨桃。這種替代在數學學術上定名為代數。
代數在歐州學科上很重要,如:
g,可是重量單位的克,也可是自由落體引數值,電訊器的第幾代,等等,上大學後會清楚的,現還小不必著急。
數學是用數字進行計算結果的學識,製造及測度都離不開它,它是人制造生產中的魂,計算是靈。
當然商貿,表演,人際關係應對等,用口音的聲,發出意思,達責令人,進行相關動作,達做物作事,及贊責,獎懲,等效應的,不在數學範圍內,而入政治.社會.等,人文學識範籌內。
此述能記住就記,不能也不必在意,長成大人了,自然就明白了。
祝您進步。
回覆列表
代數是數學的一部分,相對於幾何而言的。中學數學分為代數,幾何,機率統計,演算法等幾個主要模組,代數主要包含數與式,字母表示數,函式問題,不涉及幾何圖形內容。數學是統一的,各模組之間又有很多的聯絡!